

Immunological Approaches to Computer Security

JET Workshop April 14, 2004

Steven Hofmeyr Chief Scientist, Sana Security

Securing Complex Systems

- Knowledge-based approaches are limited
 - Signature-based/Rules-based
 - Dependant on human expertise
 - Subject to human bias and error
 - Cannot scale or keep up with complexity
 - Similar to limitations in Expert Systems in Al
- Need a bottom-up solution:
 - Autodidactic (self-learning)
- How do you develop such a solution?
 - Biological inspiration
 - Immune system as a model for security

The Immune System (IMS)

- Teleological viewpoint
 - The IMS is "designed" to protect the body
- Exceptionally difficult security problem
 - One human body is vastly more complex than entire IT infrastructure
- Continuously under attack by new and evolving threats
 - Evolution operates over millennia & bacteria replicate within days
 - No one has ever built a biowarfare agent from scratch
- IMS is highly effective
 - most of us are healthy most of the time
 - No human intervention or control needed
- If the IMS was at the same technological stage as computer security systems, we'd be extinct

Self Versus Nonself

- The IMS learns to discriminate between self and nonself
- Discrimination in the IMS based on peptides
 - Sequences of amino acids
 - IMS learns to recognize self peptides & attacks harmful nonself
 - Learning is ongoing
- Need the equivalent of a peptide for a computer system.
 - Sequences of system calls made by running programs
 - System call sequences indicate paths through program code
 - Suited to programs with repetitive behavior (e.g. servers)
 - Exploits of vulnerabilities follow unusual code paths
 - Early research at UNM later commercialized at Sana Security.

Adaptation in the Immune System 3 Sana Security

- Innate IMS
 - Evolved defenses to common pathogens, e.g. bacterial coat
 - Fixed during the organism's lifetime
- Primary Response (Adaptive IMS)
 - Learn self and detect deviations
 - Protects against new pathogens
- Secondary Response
 - Refine recognition of nonself through Darwinian evolutionary process
 - Remember for future responses
 - Better detection & elimination of known pathogens
- Adaptation confers dynamic protection
 - Cells are continually dying and being born
 - Allows adaptation to changes in self

Adaptation in Computers

- Innate = heuristics
 - e.g. buffer overflow detection (common attacks)
- Primary response = anomaly detection
 - Learn profile of normal sequences of system calls
 - Monitor for deviations from profile
 - Detect 0-day
- Secondary response = signature detection
 - Automated signature extraction
 - Drop packets at network level
 - Pattern matching to identify attack variants
- Dynamic protection
 - Forget unused system call sequences
 - Incremental learning during system changes (manual/automatic)

Responding to Attackers

- Detection inextricably linked with response in IMS
 - Detection is binding (action)
- But computer defense usually separates detection from response
 - Gather data from distributed sensors
 - Analyze/correlate centrally
 - Human-mediated response
- Need automated response:
 - IPS = "Intrusion prevention systems" (marketing jargon)
 - Localized for speed: stop attacks before they do harm
 - Protect unpatched applications (against both known and 0-day)
 - Essential to stop fast-spreading worms

The False Positive Problem

- False positives + response == block legitimate behavior
- Blocking legitimate behavior can be expensive
 - Million dollar transactions
 - Downtime on mission critical servers
- Failure modes
 - Catastrophic (one disastrous event)
 - Repetitive (ongoing loss of legitimate functionality)
- We can never get away from false positives
 - Scale of systems
 - Dynamic environments
 - Base-rate fallacy

Base-Rate Fallacy (BRF)

- Low base-rate of incidence => most alarms will be false
- Example: test for disease
 - Test accuracy = 99% symmetrical
 - Base-rate incidence = 1/10000
 - Probability of disease = 0.0098 (approx 1%)
- Applied to intrusion detection
 - Human operators will not trust alarms
 - Response to alarms will mostly be harmful
- Also a problem for the IMS

BRF and the Immune System

- Chemical binding is not perfect
 - Errors in "detection"
- Compute base-rate of incidence
 - Self: 1ml blood contains 5 x 10⁴ cells
 - Nonself: HIV treatment threshold = 55,000 copies per ml
 - 1 x 10⁻⁵ base-rate
- Assume accuracy of
 - P(true positive) = 0.9
 - P(false positive) = 0.001
- Result: 99.9% of all bindings are to self
- Why is this not a problem in the IMS?

Immunological Costimulation

- IMS overcomes false positive problem via costimulation
- Two signals required for immune cell activation
 - First signal: anomalous peptide
 - Second signal: indicator of damage (cell death)
- Signals of cell death
 - Explicit: yell of "murder!", e.g. heat shock proteins
 - Implicit: unusual exposed cell contents (non-apoptosis)
- Hence response occurs only in the presence of damage
- And response is proportional to damage
- Self-recognition not associated with damage

Costimulation in Computers

- Two signals
 - First signal == anomaly detection
 - Second signal == damage indication
- Signals must be reliable
 - Explicit, e.g. local system load recorded through remote secure logging
 - Implicit, e.g. server response time
- Three areas of damage
 - Availability
 - Integrity
 - Confidentiality

Damage in Computers

- Damage to availability
 - Easiest to measure
 - Explicit signals, e.g. local resource loads, memory usage, etc.
 - Implicit signals, e.g. server response times, network congestion, etc.
- Damage to integrity
 - Disk and memory content modifications
 - Example: monitoring for file system changes (integrity checkers)
 - Example: monitoring for code-injection into memory
- Damage to confidentiality
 - Hardest to measure
 - Example: monitoring for reads of confidential file information
 - Example: monitoring for network transmissions of confidential information

Limitations of Damage Monitoring

- Damage dependence works in the IMS because:
 - Cells are cheap (can afford to lose some)
 - Damage is incremental, i.e. no catastrophic failures
- Sometimes components are "cheap" in a computer system:
 - Server farm
 - Desktops
 - Ordinary web-server transactions
- But often fails in current computer systems
 - Components not discardable, e.g. critical databases
 - Events not discardable, e.g. million-dollar transactions
 - Catastrophic failures, e.g. widespread vulnerability
 - Loss of confidentiality, e.g. access to credit card database

Damage-Response Architectures

- Only react when there is damage
 - No reaction to false positives
 - Initial attacks will be successful
- Ensure successful attacks do not lead to catastrophic failure
 - Components must be cheap and redundant
 - Events must be cheap and repeatable
 - Failures in confidentiality must be limited, e.g. fragmentation scattering
 - Use diversity to prevent failure replication
- Ensure damage signals are reliable
 - Prevent spoofing
 - Prevent blocking, e.g. remote secure logging

Distributed Damage-Response

- Example: network of desktops
- Assume compromise of any individual machine is tolerable
- First signal
 - Each machine runs an anomaly detection system
 - Each machine communicates anomalies to its neighbors
- Second signal
 - Each machine communicates its internal state to its neighbors
 - Each machine monitors its neighbors for damage
- Example: stopping a worm
 - Anomalies dispatched to neighbors as compromise occurs
 - Machines monitor neighbors for damage, e.g. port scanning, network overload, crashing, poor response times, etc.
 - Machines react by increasing their security posture (prevention mode)

Correlation and False Positives

- Another perspective
 - Multiple signals == correlation of multiple anomaly sources
- Reduce false positives with little impact on false negatives
 - Maximize sensitivity of each detection system
 - Correlate to reduce false positives
- Example
 - Two independent detection systems with FP = 0.1 and FN = 0.2
 - Assume a decrease of FN to 0.1 results in increase in FP to 0.2
 - Then correlated FP = 0.2^2 = 0.04 and FN = $1 0.9^2$ = 0.19
 - No change in FN, 5 times reduction in FP
- Sources must be independent but not disjoint
- If FN = 0 then correlation simply reduces FP

False-Positive Tolerant Architectures

- Minimize false negatives at the cost of false-positive increase
- Requires tolerance of false positives
 - Remove humans from the loop (automated response)
 - Ensure no catastrophic failures from automated response
 - Ensure no repetitive failures (hard diversity?)
- Potentially easier to design a system tolerant of false positives
 - Known quantity (predictability?)
 - Failures don't target the weakest points
- Can we transform problem from security to fault tolerance?

Example False-Positive Tolerance Sana Security

- Example: scale-free networks
 - Tolerant of random node failures
 - Not tolerant of attacks targeting hub nodes
 - Prevent targeted attacks, even at cost of more random failures

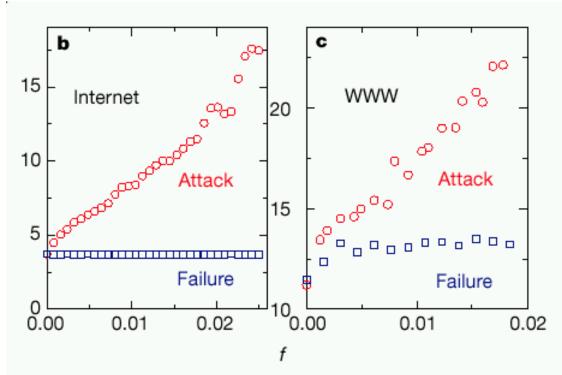


Image source: Albert et al. Nature, V406, 27 July 200.

Limits of the analogy

- Neonatal tolerance
- Frequency of self vs nonself
- Confidentiality vs availability
- Discardable components
- Discardable events
- Maximizing human expertise

Summary

- Knowledge-based approaches to security are struggling
 - Cannot deal with increasing complexity
- A study of the IMS offers hope for securing increasingly complex IT systems
- But the body has co-evolved with the IMS to be easier to protect
 - Cells are cheap and discardable
 - Damage is incremental and easy to measure
- In the long-run, we need to redesign the systems being protected
 - Very different from old notion of trusted computing base
 - Design for false-negative tolerance, e.g. network of desktops
 - Design for false-positive tolerance, e.g. scale-free networks